Corrosion Deposits

Darren A. Lytle, Jeremy Payne and Michael Schock U.S. Environmental Protection Agency ORD, NRMRL, WSWRD, TTEB, Cincinnati, Ohio 45268

Lytle.darren@epa.gov

RESEARCH & DEVELOPMENT

Building a

scientific foundation for sound environmental decisions

Acknowledgements

- Christy Frietch, Cheryl James, Tim Hodapp, and Tori Blackschlager- U.S. EPA
- Abraham Chen, Bruce Sass, Lili Wang-Battelle Memorial Institute

Building a scientific foundation for sound environmental decisions

Project Objective

Determine the composition of solids collected from DW DS where measurable amounts of arsenic in the finished water

- pipe sections (corrosion products, deposits, etc.,)
- fire hydrant flush (loose particles, corrosion products, etc.)

Building a scientific foundation for sound environmental decisions

Fire Hydrant Flush

RESEARCH & DEVELOPMENT Building a scientific

Building a scientific foundation for sound environmental decisions

Pipe Material

Took what we could get when we could get it.

Any material was acceptable (PVC, AC, cast iron, copper, etc..)
Scrape (layering if possible), grind

Iron pipe

Building a scientific foundation for sound environmental decisions

Pipe Scale Cross Section

Building a scientific foundation for sound environmental decisions

Sample Preparation

Building a scientific foundation for sound environmental decisions

Solids Analysis

Acid digestion/ICP-MS (Battelle)

- Ca, Mn, Fe, Mg, P, Si, As
- Units

XRF (Univ. of Cincinnati Geology Dept.)

CI, S, Ba, Ca, Mn, Mg

XRD

Mineral phases

Electron mircoprobe-WDS (Battelle)

Quantitative elemental mapping

SEM-Wavelength dispersive spectrometerimaging and elemental mapping

Analysis Techniques

X-ray Diffraction

- I dentification of crystalline minerals
- Crystal size approximation

SEM - Energy Dispersive Spectrometry

- High magnification micrographs
- Elemental composition and mapping

Analysis Techniques

X-ray Photaelectron Spectrometry

Determines oxidation state, bonding energy, bond type, and chemical composition

Electron Microprobe

Determines the chemical composition of very small samples, and produce high resolution elemental maps

Analysis Techniques

Acid Digestion and ICP - MS

- Provides quantitative elemental composition of solid samples
- This technique is destructive

X-Ray Florescence

Provides semi-quantitative elemental composition without destroying the sample.

Building a scientific foundation for sound environmental decisions

Elemental Mapping- Microprobe-WDS analysis

Arsenic distribution

Effects of Iron Scales and Iron Release

- Particle formation
- Discolored water
- Staining of fixtures, clothing
- Metallic tasting water
- Flow restriction
- Oxidant demand
- Biofilm

Building a scientific foundation for sound environmental decisions

Figure 7. Elemental mapping of cross section of sample DL00046 by electron microprobe (240X).

Corrosion is Different from I ron Release

Corrosion of iron is the conversion of "metallic iron" to an oxidized form, either soluble or an oxidized scale.

- Fe \rightarrow Fe²⁺ + 2e⁻
- Usually measured as weight loss from metallic iron

Iron release is the transport of iron, in soluble form or as a particle, from corrosion scale or metal to bulk water.

- Cumulative effect of corrosion, hydraulic scouring and dissolution of corrosion scales.
- Usually measured as concentration of iron in bulk water

Building a scientific foundation for sound environmental decisions

Tubercle Structure

Brittle Crust Layer

Soft Inner Layer

Hard Shell Like Layer

Building a scientific foundation for sound environmental decisions

Tubercle Structure

Building a scientific foundation for sound environmental decisions

Key I ron Release Model Features Role of Particles/Colloids

- When oxygen and chlorine are in contact with scale, ferrous ions are oxidized within the scale or close to the surface- the iron is incorporated into the scale
- When oxidants are not present at the surface, ferrous iron can diffuse into solution and is oxidized there- particles form in the water

Building a scientific foundation for sound environmental decisions

Corrosion of Copper Pipes

I ron precipitate from distribution system

Building a scientific foundation for sound environmental decisions

Copper Pitting

Insert Cu pipe photo here

Building a scientific foundation for sound environmental decisions

Copper Pitting

Copper Corrosion Deposit

Pit Beneath Corrosion Deposit

Building a scientific foundation for sound environmental decisions

Building a scientific foundation for sound environmental decisions

Lead Aging

Building a scientific foundation for sound environmental decisions

Lead Aging

Building a scientific foundation for sound environmental decisions

Goethite

Phosphate Crystal in Goethite